MIT at SemEval-2017 Task 10: Relation Extraction with Convolutional Neural Networks
نویسندگان
چکیده
Over 50 million scholarly articles have been published: they constitute a unique repository of knowledge. In particular, one may infer from them relations between scientific concepts. Artificial neural networks have recently been explored for relation extraction. In this work, we continue this line of work and present a system based on a convolutional neural network to extract relations. Our model ranked first in the SemEval-2017 task 10 (ScienceIE) for relation extraction in scientific articles (subtask C).
منابع مشابه
OhioState at SemEval-2018 Task 7: Exploiting Data Augmentation for Relation Classification in Scientific Papers using Piecewise Convolutional Neural Networks
We describe our system for SemEval-2018 Shared Task on Semantic Relation Extraction and Classification in Scientific Papers where we focus on the Classification task. Our simple piecewise convolution neural encoder performs decently in an end to end manner. A simple inter-task data augmentation significantly boosts the performance of the model. Our best-performing systems stood 8th out of 20 te...
متن کاملCombining Recurrent and Convolutional Neural Networks for Relation Classification
This paper investigates two different neural architectures for the task of relation classification: convolutional neural networks and recurrent neural networks. For both models, we demonstrate the effect of different architectural choices. We present a new context representation for convolutional neural networks for relation classification (extended middle context). Furthermore, we propose conn...
متن کاملLABDA at SemEval-2017 Task 10: Relation Classification between keyphrases via Convolutional Neural Network
In this paper, we describe our participation at the subtask of extraction of relationships between two identified keyphrases. This task can be very helpful in improving search engines for scientific articles. Our approach is based on the use of a convolutional neural network (CNN) trained on the training dataset. This deep learning model has already achieved successful results for the extractio...
متن کاملLIA at SemEval-2017 Task 4: An Ensemble of Neural Networks for Sentiment Classification
This paper describes the system developed at LIA for the SemEval-2017 evaluation campaign. The goal of Task 4.A was to identify sentiment polarity in tweets. The system is an ensemble of Deep Neural Network (DNN) models: Convolutional Neural Network (CNN) and Recurrent Neural Network Long Short-Term Memory (RNN-LSTM). We initialize the input representation of DNN with different sets of embeddin...
متن کاملAdullam at SemEval-2017 Task 4: Sentiment Analyzer Using Lexicon Integrated Convolutional Neural Networks with Attention
We propose a sentiment analyzer for the prediction of document-level sentiments of English micro-blog messages from Twitter. The proposed method is based on lexicon integrated convolutional neural networks with attention (LCA). Its performance was evaluated using the datasets provided by SemEval competition (Task 4). The proposed sentiment analyzer obtained an average F1 of 55.2%, an average re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017